Fighting Disease Recurrence and Promoting Tissue Repair after Liver Transplantation: Translating Basic Discoveries to Clinical Excellence

Project number: T12-703/19-R

Aim of study

To improve the long-term outcomes of liver transplantation (LT) by tackling two major recurring diseases including hepatocellular carcinoma (HCC) recurrence and hepatitis B virus (HBV) reactivation through exploring underlying mechanisms, identifying efficacious biomarkers, and developing potential treatments by integrating basic, translational and clinical research.

Goal: Predict smart! Treat right! Live longer!

Research Team

Advisory Committee

Clinical oriented study design

Clinical issues in liver transplantation

Living donor liver transplantation

- Fatty liver
- Small-for-size

ost-transplantation

- HCC & HBV Recurrence
- Graft fibrosis, NASH

Research themes

Theme I: HCC recurrence

Delineation of regional specialization of immune system in HCC recurrence after liver transplantation

Theme II: HBV recurrence

Development of novel noninvasive strategies for overcoming HBV reactivation after liver transplantation

Theme III: Tissue repair

Novel therapeutics to overcome graft injury by engineered cells for tissue repair and liver regeneration

Key findings of Theme I: Cancer recurrence

(Outputs: 19 International publications; 24 Awards; 16 invited lectures; 39 Conference abstracts)

1. Novel Mechanisms of regional immune regulation

Dendritic Cells

Postoperative plasmacytoid dendritic cells (pDCs) drive HCC recurrence. (Cancer Letters 2021) (Cancer Research 2022) . (Rising Star Award 2021) (Young Investigator Awards 2023)

pDCs promote HCC recurrence (Cancer Research 2022)

MDSCs

- MDSCs-induced activation of NLRP3 inflammasome promotes HCC recurrence after steatotic graft liver transplantation. (JHEP Report 2023)
- Monocytic MDSCs mobilization promotes tumor recurrence. (Cell Death Dis. 2021)

Monocytic MDSCs promote HCC recurrence (Cell Death Dis. 2021)

NK Cells & T Cells

- Post-transplant TLR4induced NKG2A+ natural killer (NK) cells promote HCC recurrence after LT. (Young Investigator Award 2024)
- CXCR6+CD69+ liverresident memory CD8 T cells reduce HCC recurrence after LDLT. (Young Investigator Award 2024)
- Tumor-derived iron loaded-exosomes impair CD8+ T anti-tumor ability via ferroptosis in HCC. (Young Investigator Award 2022 & 2024)

2. Novel Therapies for HCC

- ∆42PD-1 is a novel immunotherapeutic target of HCC. (Gut 2023) (Faculty Outstanding Research Output Award 2023)
- Implemented precise in situ delivery of a photoenhanceable inflammasome-activating nanovaccine to activate anti-cancer immunity. (Cancer Res 2024)
- Clinically implemented stereotactic body radiation for the treatment of HCC on waitlist for liver transplant. (Hepatology. 2021)

Δ42PD-1 to be a novel immunotherapeutic target of HCC (*Gut 2023*)

3. Novel Prediction Models

- Established P3C-UCSF-AFP score in predicting HCC recurrence after LT. (Hepatol Int 2023)
- Synergized multi-disciplinary collaboration in using machine learning to develop prognostic models for liver transplantation and liver diseases (ITC-MRP 2022)

Fighting Disease Recurrence and Promoting Tissue Repair after Liver Transplantation: Translating Basic Discoveries to Clinical Excellence

Project number: T12-703/19-R

Key findings of Theme II: HBV Recurrence

- 1. Novel mechanisms and therapeutic intervention of Δ 42PD-1 B cells in HBV reactivation after liver transplantation
- Rapid up-regulation of Δ 42PD-1 on B cells contributes to HBV reactivation after liver transplantation. The Δ 42PD-1-SHP1 axis causes memory B cell exhaustion.
- Δ42PD-1-specific monoclonal antibody is an effective therapeutic intervention for B cells responses and HBV therapy. (*GRF 2022, APCMV Congress 2024*)

2. Novel circulating biomarker for HBV reactivation after liver transplantation

 Upregulation of exosomal miR766-3p significantly associates with HBV reactivation after liver transplantation. Inhibition of miR766-3p functionally suppresses HBV infection. (ILTS Annual Congress 2021, IDDF 2022)

Key findings of Theme III: Tissue Repair & NASH/NAFLD-HCC

(Outputs: 36 International publications; 19 Awards; 37 invited lectures; 27 Conference abstracts)

1. Novel mechanisms of steatotic graft injury and NASH

 Revealed the mechanisms of dietary cholesterol in driving gut microbiotaassociated fatty liverassociated liver cancer. (Gut. 2021)

Mechanism and therapeutic target of cholesterol-induced NAFLD-HCC development (Gut. 2021)

Magnet-Driven and Image-Guided Degradable Microrobots

 Deciphered the role of mitochondrial metabolic reprogramming in steatotic graft injury after LT. (Ann Surg 2022) (Cell Mol Gastroenterol Hepatol 2023)

AMPK-PGC1α axis regulates mitochondrial nomeostasis in steatotic graft (Ann Surg 2022)

- Uncovered the distinct role of beta-catenin mutation in NAFLD-associated liver cancer. (J Hepatol 2022)
- Identified the mechanism of altered portal vein serum metabolome in contributing to human HCC. (Gut. 2022)
- Delineated the mechanism of Squalene epoxidase in inducing NASH. (Gastroenterology 2021)
- Unveiled the mechanism of METTL3 in driving the development of NAFLD-related HCC. (Cell Rep Med 2023)

2. Novel therapies for graft injury and NASH/NAFLD-HCC

 Developed magnetic-driven microrobot-assisted cell therapy and embolization for the treatment of HCC. (Small 2021)

 Targeted SQLE to restore anti-PD-1 efficacy in metabolic dysfunction-associated steatohepatitis-induced HCC. (Gut. 2024)

Targeting SQLE promote anti-PD-1 therap response in MASH-HCC (Gut. 2024)

- Utilized P.distasonis with dietary inulin to suppress NASH (Nat Microbiol 2023)
- Identified TUBB4B as a novel therapeutic target in NAFLD-HCC. (J Pathol 2023)

Achievements and Impacts

Clinical Impacts

• Translated the anti-Δ42PD-1 immunotherapy into clinical trial for the treatment of HCC

Output Award 2023 for the jointed publication in *Gut 2023*

 Conducted the first prospective trial using the combination of immunotherapy and locoregional treatment as conversion therapy for advanced HCC

Innovative Invention & Translations

 A patented bionic liver-incube for precision oncology & a spin-off biotech company (CRF, ITC-MHKJFS, ITC-TSSSU, HKSTP Incubio)

 China Association of Inventions Award & Gold Medal at 49th Geneva Inventions 2024

International Recognitions

 ILTS Basic Science Established Investigator Award 2022 – Kwan Man

ILTS Rising Star Award & Young Investigator Award 2022 – Tao Ding & Zhe Wang

ILTS Vanguard-Basic Science Award 2023 – Jiang Liu & Li Pang

Organized Conferences

 The Annual Congress of HKSI 2023/24

HKSA Submit on Life Science Technology, Innovation and Translation 2023

 The 18th Congress of Asia Society of Transplantation 2023

Sustainable Collaborations

 Joint Beijing Key Laboratory of LT and Bionic Manufacturing

New Laboratory at HKU Materials Innovation Institute for Life Sciences and Energy

Medical-Engineering collaborations with CityU